132 research outputs found

    Generalized Separable Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) is a linear dimensionality technique for nonnegative data with applications such as image analysis, text mining, audio source separation and hyperspectral unmixing. Given a data matrix MM and a factorization rank rr, NMF looks for a nonnegative matrix WW with rr columns and a nonnegative matrix HH with rr rows such that M≈WHM \approx WH. NMF is NP-hard to solve in general. However, it can be computed efficiently under the separability assumption which requires that the basis vectors appear as data points, that is, that there exists an index set K\mathcal{K} such that W=M(:,K)W = M(:,\mathcal{K}). In this paper, we generalize the separability assumption: We only require that for each rank-one factor W(:,k)H(k,:)W(:,k)H(k,:) for k=1,2,…,rk=1,2,\dots,r, either W(:,k)=M(:,j)W(:,k) = M(:,j) for some jj or H(k,:)=M(i,:)H(k,:) = M(i,:) for some ii. We refer to the corresponding problem as generalized separable NMF (GS-NMF). We discuss some properties of GS-NMF and propose a convex optimization model which we solve using a fast gradient method. We also propose a heuristic algorithm inspired by the successive projection algorithm. To verify the effectiveness of our methods, we compare them with several state-of-the-art separable NMF algorithms on synthetic, document and image data sets.Comment: 31 pages, 12 figures, 4 tables. We have added discussions about the identifiability of the model, we have modified the first synthetic experiment, we have clarified some aspects of the contributio

    Modelling Rod-like Flexible Biological Tissues for Medical Training

    Get PDF
    This paper outlines a framework for the modelling of slender rod-like biological tissue structures in both global and local scales. Volumetric discretization of a rod-like structure is expensive in computation and therefore is not ideal for applications where real-time performance is essential. In our approach, the Cosserat rod model is introduced to capture the global shape changes, which models the structure as a one-dimensional entity, while the local deformation is handled separately. In this way a good balance in accuracy and efficiency is achieved. These advantages make our method appropriate for the modelling of soft tissues for medical training applications

    Sketch-based skeleton-driven 2D animation and motion capture.

    Get PDF
    This research is concerned with the development of a set of novel sketch-based skeleton-driven 2D animation techniques, which allow the user to produce realistic 2D character animation efficiently. The technique consists of three parts: sketch-based skeleton-driven 2D animation production, 2D motion capture and a cartoon animation filter. For 2D animation production, the traditional way is drawing the key-frames by experienced animators manually. It is a laborious and time-consuming process. With the proposed techniques, the user only inputs one image ofa character and sketches a skeleton for each subsequent key-frame. The system then deforms the character according to the sketches and produces animation automatically. To perform 2D shape deformation, a variable-length needle model is developed, which divides the deformation into two stages: skeleton driven deformation and nonlinear deformation in joint areas. This approach preserves the local geometric features and global area during animation. Compared with existing 2D shape deformation algorithms, it reduces the computation complexity while still yielding plausible deformation results. To capture the motion of a character from exiting 2D image sequences, a 2D motion capture technique is presented. Since this technique is skeleton-driven, the motion of a 2D character is captured by tracking the joint positions. Using both geometric and visual features, this problem can be solved by ptimization, which prevents self-occlusion and feature disappearance. After tracking, the motion data are retargeted to a new character using the deformation algorithm proposed in the first part. This facilitates the reuse of the characteristics of motion contained in existing moving images, making the process of cartoon generation easy for artists and novices alike. Subsequent to the 2D animation production and motion capture,"Cartoon Animation Filter" is implemented and applied. Following the animation principles, this filter processes two types of cartoon input: a single frame of a cartoon character and motion capture data from an image sequence. It adds anticipation and follow-through to the motion with related squash and stretch effect

    Beads-on-String Model for Virtual Rectum Surgery Simulation

    Get PDF
    A beads-on-string model is proposed to handle the deformation and collision of the rectum in virtual surgery simulation. The idea is firstly inspired by the observation of the similarity in shape shared by a rectum with regular bulges and a string of beads. It is beneficial to introduce an additional layer of beads, which provides an interface to map the deformation of centreline to the associated mesh in an elegant manner and a bounding volume approximation in collision handling. Our approach is carefully crafted to achieve high computational efficiency and retain its physical basis. It can be implemented for real time surgery simulation application

    Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems

    Get PDF
    Background: Compared with traditional thoracotomy, video-assisted thoracoscopic surgery (VATS) has less minor trauma, faster recovery, higher patient compliance, but higher requirements for surgeons. Virtual surgery training simulation systems are important and have been widely used in Europe and America. Augmented reality (AR) in surgical training simulation systems significantly improve the training effect of virtual surgical training, although AR technology is still in its initial stage. Mixed reality has gained increased attention in technology-driven modern medicine but has yet to be used in everyday practice. Methods: This study proposed an immersive AR lobectomy within a thoracoscope surgery training system, using visual and haptic modeling to study the potential benefits of this critical technology. The content included immersive AR visual rendering, based on the cluster-based extended position-based dynamics algorithm of soft tissue physical modeling. Furthermore, we designed an AR haptic rendering systems, whose model architecture consisted of multi-touch interaction points, including kinesthetic and pressure-sensitive points. Finally, based on the above theoretical research, we developed an AR interactive VATS surgical training platform. Results: Twenty-four volunteers were recruited from the First People's Hospital of Yunnan Province to evaluate the VATS training system. Face, content, and construct validation methods were used to assess the tactile sense, visual sense, scene authenticity, and simulator performance. Conclusions: The results of our construction validation demonstrate that the simulator is useful in improving novice and surgical skills that can be retained after a certain period of time. The video-assisted thoracoscopic system based on AR developed in this study is effective and can be used as a training device to assist in the development of thoracoscopic skills for novices

    Hybrid features for skeleton-based action recognition based on network fusion

    Get PDF
    © 2020 John Wiley & Sons, Ltd. In recent years, the topic of skeleton-based human action recognition has attracted significant attention from researchers and practitioners in graphics, vision, animation, and virtual environments. The most fundamental issue is how to learn an effective and accurate representation from spatiotemporal action sequences towards improved performance, and this article aims to address the aforementioned challenge. In particular, we design a novel method of hybrid features' extraction based on the construction of multistream networks and their organic fusion. First, we train a convolution neural networks (CNN) model to learn CNN-based features with the raw skeleton coordinates and their temporal differences serving as input signals. The attention mechanism is injected into the CNN model to weigh more effective and important information. Then, we employ long short-term memory (LSTM) to obtain long-term temporal features from action sequences. Finally, we generate the hybrid features by fusing the CNN and LSTM networks, and we classify action types with the hybrid features. The extensive experiments are performed on several large-scale publically available databases, and promising results demonstrate the efficacy and effectiveness of our proposed framework
    • …
    corecore